Initialization of K-modes clustering using outlier detection techniques
نویسندگان
چکیده
The K-modes clustering has received much attention, since it works well for categorical data sets. However, the performance of K-modes clustering is especially sensitive to the selection of initial cluster centers. Therefore, choosing the proper initial cluster centers is a key step for K-modes clustering. In this paper, we consider the initialization of K-modes clustering from the view of outlier detection. We present two different initialization algorithms for K-modes clustering, where the first is based on the traditional distance-based outlier detection technique, and the second is based on the partition entropy-based outlier detection technique. By using the above two outlier detection techniques to calculate the degree of outlierness of each object, our algorithms can guarantee that the chosen initial cluster centers are not outliers. Moreover, during the process of initialization, we adopt a new distance metric — weighted matching distance metric, to calculate the distance between two objects described by categorical attributes. Experimental results on several UCI data sets demonstrate the effectiveness of our initialization algorithms for K-modes clustering. © 2015 Elsevier Inc. All rights reserved.
منابع مشابه
An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملClustering Categorical Data Using Community Detection Techniques
With the advent of the k-modes algorithm, the toolbox for clustering categorical data has an efficient tool that scales linearly in the number of data items. However, random initialization of cluster centers in k-modes makes it hard to reach a good clustering without resorting to many trials. Recently proposed methods for better initialization are deterministic and reduce the clustering cost co...
متن کاملAn Enhanced Initialization Method to Find an Initial Center for K-modes Clustering
Data mining is a technique which extracts the information from the large amount of data. To group the objects having similar characteristics, clustering method is used. K-means clustering algorithm is very efficient for large data sets deals with numerical quantities however it not works well for real world data sets which contain categorical values for most of the attributes. K-modes algorithm...
متن کاملA Spectral Clustering Based Outlier Detection Technique
Outlier detection shows its increasingly high practical value in many application areas such as intrusion detection, fraud detection, discovery of criminal activities in electronic commerce and so on. Many techniques have been developed for outlier detection, including distribution-based outlier detection algorithm, depth-based outlier detection algorithm, distance-based outlier detection algor...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 332 شماره
صفحات -
تاریخ انتشار 2016